## Reg. No.



## **UG DEGREE END SEMESTER EXAMINATIONS - NOVEMBER 2024.**

(For those admitted in June 2024 and later)

| The gran          | PROGRAMME AND BRANCH: B.Sc., STATISTICS |                  |                                                                                                                                              |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                          |  |  |  |
|-------------------|-----------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| SEM               | C                                       | ATEGO            | RY                                                                                                                                           | COMPONENT                                                                                                                                                                    | COURSE CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | COURSE TITLE                                                                                                                             |  |  |  |
| I                 | Р                                       | <b>ART</b> – 1   | II                                                                                                                                           | CORE-2                                                                                                                                                                       | U24ST102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PROBABILITY THEORY                                                                                                                       |  |  |  |
| Date &            | Session                                 | <b>h: 12.1</b> 1 | .2024                                                                                                                                        | /FN Ti                                                                                                                                                                       | me : 3 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Maximum: 75 Marks                                                                                                                        |  |  |  |
| Course<br>Outcome | Bloom's<br>K-level                      | Q.<br>No.        | <u>SECTION – A (</u> 10 X 1 = 10 Marks)<br>Answer <u>ALL</u> Questions.                                                                      |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                          |  |  |  |
| CO1               | K1                                      | 1.               | How t<br>a) P                                                                                                                                | he result of a rando<br>rior b) T                                                                                                                                            | m experiment will be cal<br>rial c) Out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | led?<br>come d) Event                                                                                                                    |  |  |  |
| CO1               | K2                                      | 2.               | The se<br>associ                                                                                                                             | et of all possible out<br>lated with that expendence<br>frial b) S                                                                                                           | come of a given random<br>riment.<br>ample space c) Samp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | experiment is called the<br>ole Points d) Elementary Event                                                                               |  |  |  |
| CO2               | K1                                      | 3.               | A ran<br>(integr<br>a) Dis                                                                                                                   | dom variable X is sa<br>ral as well as well a<br>stinct b) D                                                                                                                 | aid to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _if it can take all possible values<br>in limits.<br>inuous d) Discrete                                                                  |  |  |  |
| CO2               | K2                                      | 4.               | Let X<br>the di<br>a) P(                                                                                                                     | be a random variable<br>stribution function $X \le x$ b) $P($                                                                                                                | e. The function F defined<br>of the random variable ( $X \neq x$ ) c) $P(X \Rightarrow x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | for all real x by $F(x) = \_$ is called<br>$\zeta$ ).<br>> x) d) $P(X = 0)$                                                              |  |  |  |
| CO3               | K1                                      | 5.               | Two ra<br>mass<br>mass<br>indepe<br>a) f                                                                                                     | andom variables X a<br>function) $f_{XY}(x, y)$ ar<br>functions) $f_X(x)$ and<br>endent if and only if<br>$f_{XY}(x, y) = f_X(x)/g_Y(y)$<br>$f_{XY}(x, y) = f_Y(x) + g_Y(x)$ | and Y with joint probability<br>and marginal probability<br>$g_Y(y)$ respectively are satisfied<br>b) $f_{XY}(x,y) = f_{YY}(x,y) = f_$ | ity density function (probability<br>density functions (probability<br>aid to be stochastically<br>$f_X(x) - g_Y(y)$<br>$f_X(x), g_Y(y)$ |  |  |  |
| CO3               | K2                                      | 6.               | For two for an a) $F_2$ c) $F_3$                                                                                                             | we dimensional rand<br>y real numbers x and<br>$A_{Y}(x, y) = P(X \le x, Y \ge x, Y)$<br>$A_{Y}(x, y) = P(X \ge x, Y \le x, Y)$                                              | $\begin{array}{l} \text{lom variable } (X,Y). \text{ the jo} \\ \text{nd y is given by:} \\ \geq y) \qquad b)  F_{XY}(x,y) = \\ \leq y) \qquad d)  F_{XY}(x,y) = \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | int distribution function $F_{XY}(x, y)$<br>= $P(X \ge x, Y \ge y)$<br>= $P(X \le x, Y \le y)$                                           |  |  |  |
| CO4               | K1                                      | 7.               | If X is<br>a)                                                                                                                                | a random variable.<br>$a^2V(X)$ b)                                                                                                                                           | then $V(aX + b) = \_$ wh<br>$aV(X)$ c) $V(a^2X)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | here a and b are constants.<br>d) $V(aX)$                                                                                                |  |  |  |
| CO4               | K2                                      | 8.               | If X an<br>a) E(<br>c) E(                                                                                                                    | nd Y are independer<br>XY) < $E(X)$ . $E(Y)XY$ ) > $E(X)$ . $E(Y)$                                                                                                           | at random variables. then<br>b) $E(XY) = E(X)$<br>d) $E(XY) \neq E(X)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n<br>). E(Y)<br>). E(Y)                                                                                                                  |  |  |  |
| CO5               | K1                                      | 9.               | $M_{cX}(t)$ a) N                                                                                                                             | =, c being a cor<br>$M_X(t)$ b                                                                                                                                               | $M_{-cX}(t)$ c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $M_{cX}(-t)$ d) $M_X(ct)$                                                                                                                |  |  |  |
| CO5               | K2                                      | 10.              | The m<br>variat<br>a) di                                                                                                                     | oment generating fu<br>bles is equal to the                                                                                                                                  | unction of the sum of a r         of their respective         divisors       c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | number of independent random<br>ve moment generating functions.<br>product d) modulus                                                    |  |  |  |
| Course<br>Outcome | Bloom's<br>K-level                      | Q.<br>No.        | $\frac{\text{SECTION} - B (5 \text{ X 5} = 25 \text{ Marks})}{\text{Answer } \frac{\text{ALL}}{\text{Questions choosing either (a) or (b)}}$ |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                          |  |  |  |
| CO1               | K3                                      | 11a.             | If A ar<br>constr                                                                                                                            | nd B are any two even<br>ruct $P(A \cup B) = P(A)$                                                                                                                           | ents (subsets of sample s<br>+ $P(B) - P(A \cap B)$ .<br>( <b>OR</b> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | space S) and are not disjoint then                                                                                                       |  |  |  |
| CO1               | КЗ                                      | 11b.             | Exam<br>Indep                                                                                                                                | ine the Statement a<br>endent events (Two                                                                                                                                    | nd proof of the Multiplica<br>event case).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ation theorem of probability for                                                                                                         |  |  |  |
| CO2               | K3                                      | 12a.             | Let X<br>Deter                                                                                                                               | be a continuous rar                                                                                                                                                          | $f(x) = \begin{bmatrix} kx & 0 \le \\ k & 1 \le \\ -kx + 3k & 2 \le \\ 0 & oth \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ability density function given by<br>x < 1<br>x < 2<br>x < 3<br><i>herwise</i>                                                           |  |  |  |
| CO2               | K3                                      | 12b.             | The d<br>variat                                                                                                                              | iameter of an electri<br>le with probability f                                                                                                                               | c cable, say X, is assume<br>function:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ed to be a continuous random                                                                                                             |  |  |  |

|     |    |      | $f(x) = 6x(1-x), 0 \le x \le 1$ . Show that $f(x)$ is probability density function.                                                                                                                                                                                                                                                              |
|-----|----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO3 | K4 | 13a. | Suppose that two dimensional continuous random variable (X,Y) has joint<br>probability density function given by:<br>$f(x,y) = \begin{bmatrix} 6x^2y, & 0 < x < 1, 0 < y < 1\\ 0, & otherwise \end{bmatrix}$ (i) Examine that $\int_0^1 \int_0^1 f(x,y)  ds  dy = 1$ (ii) Identify $P\left(0 < X < \frac{3}{4}, \frac{1}{3} < Y < 2\right)$ (OR) |
| CO3 | K4 | 13b. | A two dimensional random variable (X,Y) have bivariate distribution given by $P(X = x, Y = y) = \frac{x^2+y}{32}$ , for $x = 0,1,2,3$ and $y = 0,1$<br>Calculate the marginal distribution of X and Y                                                                                                                                            |
| CO4 | K4 | 14a. | If X and Y are random variable, then examine and prove that $E(X + Y) = E(X) + E(Y)$<br>provided all the expectations exist<br>( <b>OR</b> )                                                                                                                                                                                                     |
| CO4 | K4 | 14b. | <ul> <li>If X is a random variable and 'a' is constant, then examine</li> <li>(i) E[aφ(X)] = aE[φ(X)]</li> <li>(ii) E[φ(X) + a] = E[φ(X)] + a</li> <li>where φ(X), a function of X, is a random variable and all the expectations exist.</li> </ul>                                                                                              |
| CO5 | К5 | 15a. | <ul> <li>(i) Show the statement of Bernoulli's law of large numbers</li> <li>(ii) Show the statement of Weak law of large numbers</li> <li>(OR)</li> </ul>                                                                                                                                                                                       |
| CO5 | K5 | 15b. | Define the Statement and proof of Additive property of Cumulants.                                                                                                                                                                                                                                                                                |

| Course<br>Outcome | Bloom's<br>K-level | Q.<br>No. | <u>SECTION – C (</u> 5 X 8 = 40 Marks)<br>Answer <u>ALL Q</u> uestions choosing either (a) or (b)                                                                                                                                                                                                               |  |  |
|-------------------|--------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| CO1               | K3                 | 16a.      | Sketch the Statement and proof of Bayes' Theorem                                                                                                                                                                                                                                                                |  |  |
| CO1               | K3                 | 16b.      | Examine the Statement and proof of Boole's Inequality                                                                                                                                                                                                                                                           |  |  |
| CO2               | K4                 | 17a.      | Identify the value of k and then calculate mean, variance, and the coefficients of $\beta_1$ of the distribution:<br>$dF = kx^2 e^{-x} dx = 1, 0 < x < \infty$ (OR)                                                                                                                                             |  |  |
| CO2               | K4                 | 17b.      | A random variable X has the following probability function:                                                                                                                                                                                                                                                     |  |  |
|                   |                    |           | Value of X, x         0         1         2         3         4         5         6         7                                                                                                                                                                                                                   |  |  |
|                   |                    |           | p(x) 0 k 2k 2k 3k $k^2$ $2k^2$ $7k^2 + k$                                                                                                                                                                                                                                                                       |  |  |
|                   |                    |           | (i) Identify k<br>(ii) Calculate $P(X < 6)$ , $P(X \ge 6)$ and $P(0 < X < 5)$                                                                                                                                                                                                                                   |  |  |
| CO3               | K4                 | 18a.      | Joint distribution of X and Y is given by $f(x, y) = 4xye^{-(x^2+y^2)}$ ; $x \ge 0, y \ge 0$ .<br>Test whether X and Y are independent. For the above joint distribution, calculate the conditional density of X given Y=y.                                                                                     |  |  |
| CO3               | K4                 | 18b.      | The joint probability distribution of two random variables X and Y is given by:<br>$P(X = 0, Y = 1) = \frac{1}{3}, P(X = 1, Y = -1) = \frac{1}{3} \text{ and } P(X = 1, Y = 1) = \frac{1}{3}.$<br>Identify (i) Marginal distribution of X and Y<br>(ii) The conditional probability distribution of X given Y=1 |  |  |
| CO4               | К5                 | 19a.      | Let $X_1, X_2, \dots, X_n$ be a random variable then prove that<br>$V\left(\sum_{i=1}^n a_i X_i\right) = \sum_{i=1}^n a_i^2 V(X_i) + 2\sum_{i=1}^n \sum_{i=1}^n a_i a_j Cov\left(X_i, X_j\right)$ (OR)                                                                                                          |  |  |
| CO4               | K5                 | 19b.      | State and prove Cauchy-Schwartz Inequality                                                                                                                                                                                                                                                                      |  |  |
| CO5               | K5                 | 20a.      | Defend Chebychev's Inequality with statement and proof                                                                                                                                                                                                                                                          |  |  |
| CO5               | К5                 | 20b.      | <ul> <li>(i) Discuss Characteristics function of a random variable and State any three properties of Characteristic function (6 marks)</li> <li>(ii) Evaluate convergence in Probability (2 marks)</li> </ul>                                                                                                   |  |  |